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SURFACES WITH GENERALIZED SECOND
FUNDAMENTAL FORM IN L?
ARE LIPSCHITZ MANIFOLDS

TATIANA TORO

Abstract

This paper focuses in the relationship between the class of surfaces with
second fundamental form in L? and the class of Lipschitz surfaces (i.e.,
surfaces that are locally homeomorphic via a bilipschitz map to a flat
disc). In particular we prove that graphs of WZ’Z(RZ) functions are
Lipschitz surfaces.

Introduction

For functions u, defined on a domain Q C R’ , having locally square
integrable partial derivatives up to order 2 (in the generalized sense), the
Sobolev embedding theorems guarantee that « is locally Holder continu-
ous with any exponent « < 1, and also that the gradient Du is locally in
L? for every p < oco. There are, of course, examples illustrating that such
u may not be locally Lipschitz—that is, Du need not be locally bounded
in Q. Since it gives some important insight into the nature of the sin-
gularities of general w22 functions, we discuss a couple of particular
examples in some detail.

Example 1. LetD be the disc of radius 1 in R*>,andlet u: D —

R be defined by u(x,y) = xlog|logr|, where r = \/x2+y2. Direct
computation shows that the Hessian Dziu is in L*(D); in fact |D’u| <

Cr"llog r]_1 . On the other hand, Du is evidently unbounded on ap-
proach to the origin, in fact

u, =log|logr|+ O(|logr|™") and u,=O(logr|™") asr 0.
One can easily check that while Du has a singularity at 0, the unit normal
v = (1+|du|’)""*(~Du, 1) has limit —e, = (~1, 0, 0) as r | 0 and the
graphof u isa C ! surface embedded in R® with tangent plane normal
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to —e, at the origin. This example seems to indicate that while Du has
singular behavior, nevertheless we might expect the graph of u# to have
some reasonable behavior. The second example, based on a modification
of Example 1, shows that this fact is not obvious.

Example 2. Let D be the disc of radius 4 in R?, and let u:D — R
be defined by u(x, y) = xlog|logr|sin(log|logr|). In this case ID2u| <
Clog|logr|(r|log r|)~1 , and therefore the Hessian is in L? (D). The gra-
dient satisfies

= log|logr{sin(log|logr{) + O (k)_ﬁl_)l?o%"_l) ’
_ 10gllogr()

One can check that there is a sequence R, T co such that for each 6 € R
and each € >0

0—€e<u,<0+¢ forR;1<r/rk<Rk,

where r, | O is the sequence of points such that log|logr,|sin(log|logr,|)
= 6. We conclude that for every K > 1 there exists R, such that for each
s € (0, Ry) the graph z = u(x, y) of u is close to the plane x = 6z in
the annular region K <y /s < K. Thus, roughly speaking, the graph is
always close to a plane L : z = 6, x in annular regions K 1< r/s<K,
but this plane changes slowly as s changes; furthermore the slope 6, of
the plane L_ oscillates (very slowly) between very large pos1t1ve values
and very large negative values.

Thus this graph fails to be c! (as it was for the example above). We
can easily construct examples with much more singular behavior than the
exhibited in Example 2. For instance, let D be the disc of radius %,
(x Y j) be a countable dense subset of D and foreach N > 1 let

Uy = Zz (x — x;)log |logr | sin(log|log ;)

where r; = \/ (x —xj) + (- yj)z. Each u, has singular behavior at
each of the points (x Y j)j=1 ... n like the singular behavior of Example
2. The sequence {u,} converges in the W2’2(5) norm to a function
ue w? ’2(l~)) with a countable dense set of singular points.

Despite the pathologies presented in the examples above we show here
that it is nevertheless true that the graph, . = {(x, u(x)) : x € Q C
R2} ,of a W7 function u is a Lipschitz surface. Thus for each point
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Xy = (xy, u(xy)) € &, we can find R > 0, a domain D C Rz, and a
homeomorphism ®: D — SN By(X,) such that

* |®(x) —@(y) < Lix - y| Vx,y €D,
@) - (N SLIX - Y| VX, Y € 7N By(Xy),

where L is a positive constant.

Theorem. Let Q@ C R’ be a strongly Lipschitz domain, u €
WZ’Z(Q, R) and & = {(x, u(x)) : x € Q}. Then, there exist a do-
main Q' c R* and a homeomorphism ® : Q' — & so that (x) holds with
L<(1+ Cllulla,z,z(g))l/z. Further, the metric g = (d®)" o d® (ie., the
metric induced on Q' by pulling back the metric of graph u induced by the
Euclidean metric of R") is comparable to the standard Euclidean metric of
Q' in the sense that

sup |g,1(x) -j‘ < C”u”i;ﬂ’?(g) >

xeQ’
where g, are the components of g thus g, ( ) = (<I>| (e), P (e )y for
i,j=1, 2 Here C is a constant that depends only on Q.

Actually the main result in this direction is somewhat more general,
beging applicable to a larger class of surfaces in R”. Given 8,¢, p > 0,
let ,Z, (B p({ )) denote the set of C*° embedded and connected surfaces
& in R", with 8.7 n B,({) = @, and satisfying

ZUFNB,(L) < Bp’ and |42 d#* < €.
S0B,(0)

Here A denotes the second fundamental form of &, i.e., for { € &7,
A({) is the symmetric bilinear form on Tcy with eigenvalues the prin-
cipal curvatures of . at {. Let 5; (B p(C )) be the set of integer multi-
plicity varifolds v(*, 6) which in B p(ﬁ ) can be expressed as a measure
theoretic limit of sequences {}, where & € 7 (B,({)). The main
theorem in this setting is the following result:

Theorem. Forany B > 0, there exists €, = €,(B , n) sothat if v(*, 6)
EZ?,EO(B/I(O) and { € %, then

N

UF L B, o) = 3 0(F; L B, g,(0)),

i=1

where each Z; is the image of a disc in R® viaa bilipschitz map ®;, and
where the decomposition is compatible with the multiplicity. Moreover for
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i=1,..., N,

I(d¥,)" o (D¥,) — 1, <Cel, and Lip¥,,Lip'¥; <1+ Ce,.

Here ()" denotes the adjoint, and 1 denotes the identity transformation
on R%.

Now, we would like to indicate how to prove the first theorem as a
corollary of this last theorem. Since Q is a strongly Lipschitz domain,
Calderon’s extension theorem asserts that there exists a function v €
w2 4R? R) so that

v, =1, v=00nR\Bg(0), and [[v],22g < Cliullyrg,,
for some R large enough, and where C only depends on Q. For A €
(0,11, let & = {(x,v,(x)) : x € Rz}, where v,(x) = Av(x). Since
v, € WOZ’Z(BZR(O) ﬂRZ) , then v, € C°® (see [2]) and &, = graphv, is c’
embedded in R®. There exists a sequence of functions v; € W2’2(R2) N
CZ (ByR(0) ORZ) that approximate v, in the Ww?? norm. In particular
for j large enough

||’Uj||W2,2(Rz) < 2||’l}l||W2,2(R2) < Zi”’l}“Wz,z(Rz) s

and if A4 i denotes the second fundamental form of 5’] = graphv i then
we have

2 2 2 2 2 2
/y]Ajl a7t < C/Rz D%, < Cyi?Jullen gy
J

Moreover there exists K > 0 so that forall j > 1, supp. lvjl < K. Choos-
ing p > 0 large enough so that graphv i , C Bp(O) , the monotonicity

By (0)NR
formula (see §4) guarantees that for r > p

p N FNB(0) < C (r’z%(yj N B,(0)) + / 4,7 d%) <B.
SNB,(0) '

Choosing A small enough so that Colznulli,,z,z(m 583 , Where ¢, = g,(B) is
as in the theorem above we conclude that for j large enough 5’] NB p(O) €

Ty (B ,(0)) and therefore & € T4 .+(B,(0)) . Thus applying the previous
result combined with the fact that & is C° embedded in R® we are led

to that there exists a bilipschitz homeomorphism @, : Q- & so that
Lip®,, Lip®, " < 1+ Cllv, (3255,

and ,
“(dq)l) O(dq)l) — l”Loo(Qr) < C”%”W?’Z(RZ) .
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Let R/l(x1 , x%, x3) = (x', x?, A_1x3) and define ® = R, 0o®P,. One
easily checks that @ is a suitable bilipschitz homeomorphism onto graph
u.

The second theorem gives some insight on the structure of integer multi-
plicity 2-dimensional varifolds with generalized second fundamental form
in L*. Specifically, for an open domain U c R" with 0 € U, let F(U)
denote the set of multiplicity one 2-dimensional varifolds without bound-
ary, v(%), with C™ connected support in U, containing 0 and which
have uniform local bounds in U on their areas and on the L’ norms
of their second fundamental form. Let 7 (U) be the set of v(¥, 0)
which in U, can be expressed as the measure theoretic limit of sequences
{v(#)}, where v(F) € I (U). That is, we assume, that for each com-
pact K C U there is a constant C, such that # 2@7}( NK) < Cy,
fyan ]Aklza’i?2 < Cy and fx‘fa’%2 — [o fdu for each fixed con-
tinuous f: U — R with compact support in U . Under these conditions
u=x 26 , where @ is a positive integer-valued function; {<#} converges
to % in the Hausdorff distance sense and the generalized second funda-
mental form 4 of .# (see [3]) is well defined and in L* with respect to
the 2-dimensional Hausdorff measure on .¥°. Then we have

Corollary. For v(%, 0) € I (U), there are finitely many points {,,
54, € & so that for all { € A\, -, - there exists r({) > 0
such that if Q <r < r({), then

NC
(& B,(0)) = ZQ(Q}LB,(C)) ;

where each ), is a bilipschitz image of a disc in R%, and where the de-
composition is compatible with the multiplicity.

In order to prove the main theorem we initially focus our attention on a
special type of neighborhoods, the quasirectangles which behave very much
like rectangles in R? , in the appropriate sense. In particular they admit pa-
rameterizations that are bilipschitz with respect to their intrinsic distance.
Then using the Approximate Graphical Decomposition Lemma [11], [12],
we prove that if { € & and [ B, }AI2 d#’ is small enough, there

exists a quasirectangle in % N B p(C ) containing ¢, where the euclidean
distance and the intrinsic distance are equivalent. The result about the
equivalence of the Euclidean and the intrinsic distances also follows from
work of G. David and S. Semmes concerning surfaces with unit normal
having small BMO norm; see {7], [8], [9].
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We would like to emphasize that all the constants C which appear in
this paper only depend on #, the dimension of the ambient space, and in
particular do not depend on the surface. We always assume C > 1.

I would like to thank Leon Simon for many helpful conversations and
for his continual encouragement. The results in this paper were part of
the author’s doctoral dissertation at Stanford University.

2. Quasirectangles

Most of the technical content of the theorem lies in the proof of the fact
that, intrinsically, guasirectangles are bilipschitz surfaces. This section is
devoted to the study of this type of neighborhoods.

Definition 2.1. Let o € (0, {) and let £ c R” be diffeomorphic, via
a C™ diffeomorphism, to the unit square [0, 1] x [0, 1]. We say that X
is an a-quasirectangle if the following conditions hold:

(i) fzla’d#®* <o’

(ii) There exists a 2-dimensional subspace L ¢ R" (spanned by T, 7T,
with |7,| =|7,| = 1, (1, 7,) = 0) so that dX projects simply onto L
and

sup |7,({) A7y(0) — 7| < a,
{€dx

n =1, A7y =1.({y) A 1,({,) for some {, € 9%,
where 7,({), 7,({) form an orthonormal basis for TX.
(iii) There exist a rectangle Q C R with

length of the longer side of Q <9
— length of the shorter side of 0 — 7’

and a smooth map f: R? o L with f(Q) = R, where R is the compact
region of L bounded by the orthogonal projection A of X onto L, so
that
sup [[(df" o df), — 1]l < o,
xER?
where ()" denotes the adjoint, and 1 is the identity transformation of R>.
X will be referred to simply as a quasirectangle if it is an a-quasirectangle
with a € (0, %). We denote by v({) the 2-vector 7,({)A7,({) orthogonal
to TCZ.
Remarks.
2.1. Notice that, since |df ()| < V1 + a® < 140’ for each unit vector
7, by integration along straight line segments we see that f satisfies the
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Lipschitz condition
2 2
If(x) = fMI <A +a)lx -y <3x-y, ¥x,yeR".

Assume that L = R%. Then det df # 0, and hence f would be a covering
map of R%. This implies, by a monodromy argument that f is 1:1.
Thus (even in the case where L is arbitrary), we have that f is a dif-
feomorphism. Also, condition (iii) above implies that the inverse 7 of f
satisfies sup, ., [[(dh” odh), — 1| < 207, and hence that

|h(x) — k()| < (1 +2a7)x —y| < $x —y|, V¥x,v€L.

2.2. Since 9X projects simply onto L, the curve A of the above
definition is the diffeomorphic image of the boundary of the unit square.
Since osc,y v < 2supy; |[v — | < 2a, there exist a neighborhood W of
A in L and a function w € C™(L, Ll) so that V = grapthWnR isa
boundary neighborhood of % and 8% = graph Wiag - Here for A Cc L,
graphw,, = {x + w(x): x € 4}. For { € V' C X there exists x € W so
that { = x + w{x), and the 2-vector normal to X at { can be expressed
as

T, AT, + Dr‘w AT, + 1T, /\'Dzz'w + Dﬂw A szw
- (1+|Dwf* +1D, w A D, w]*)'/?

The fact that n = v({,) for some {, € 0%, guarantees that we can find
such a w satisfying

v(¢)

sup |[Dw| < ochw < dosc,ov < 1.
L

Lemma 2.1. If X is a quasirectnagle with corresponding rectangle Q C
R’ asin Definition 2.1, then diamX < C diam Q and /72(2) <C(diam Q)z,
where diam Q denotes the diameter of Q, and # 2 denotes the 2-dimen-
sional Hausdorff measure.

Proof. By the first variation formula

/zdivz(l>=/z_(ﬂ,d>)+/az(v,d>),

where the notation is as follows: H is the mean curvature vector of X,
|H| = |trace A|, @ is any Lipschitz vector field defined in a neighborhood
of ¥, v is the outward unit conormal vector of 9%, and divy® is the
tangential divergence of ®. Setting ®({) = { — {,, where {, is a point
of 9% we deduce that

2;72(2)=/E(ﬂ,C—Co>+/az(v,C—Co>-
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By the definition of quasirectangle we have that
#(9%) < (1 + sup |Dw|2) F(A)
L
<3Lipf10Q| < 3-3-4-diamQ < 6diam Q,
where [0 Q| denotes the length of 8Q, and # denotes the 1-dimensional
Hausdorff measure. Moreover since diamadX < %%’ (8Z), we have
277(Z) < diam = / \H|+ 57 (9%)diam % < diam = / \H|+ 18(diam Q).
T T

Applying the Cauchy-Schwarz inequality on the right yields

2 . 2 ,onn1/2 2\'/? . 2
27(T) < diam Z(F(D)) ( / \H| ) + 18(diam Q)
z

1/2
< 2diam Z(#%(x))"/? ( /z |A|2) + 18(diam Q)°.

We need to estimate diamZX in terms of diam Q so: either diamX <
47 (0%) < 24diam Q or diam X > 4#(9ZX). In the first case we conclude
that
27%(5) <224 Ldiam Q(#°(2))"/? + 18(diam Q)°

< 6diam Q(#°(2))"* + 18(diam Q)°

< #*(Z) +27(diam Q)° .
In the second case there exists {; € £ such that dist({,, %) > lé diamX.
We apply the first variation formula to ®({) = |X |;2X where X ={-{,,
0< 0 < jgdiamZ < p, |X|, = max{|{ - {,|, 0}, and B,({;)NoZ=0.
Letting ¢ | O we have the identity

Ly, @0 1
”+/z(4ﬂ+ |X|2) 2 az< |X|> 16/"'

where ( )l denotes the projection onto the normal space to X. Hence

8
<
TS Zamz
3 diam X < 87(9%) + 6i4 diamX.
The above inequality implies diamX < 4.#(3X), which contradicts our
original assumption. Therefore we always have diamZX < 47(9%) <
24diam Q which implies #*(Z) < C(diam Q).

z/(az)+% / 4P d 7>,
z
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The following lemma is the key technical ingredient of the proof of the
main theorem. It shows that a quasirectangle with nice boundary, in a
suitable sense, is the image of its associated rectangle by means of a map
that is bilipschitz with respect to the intrinsic distance.

Main Lemma. There is a fixed constant ¢, > 0 such that if ¢ < ¢, if
=9 s an e-quasirectangle (satisfying conditions (1), (ii), (iii) above with
5O , Q(O) , L(O), 17(0) , fm) , € inplace of £,Q,L,n, [, a respectively)
and if # (62(0)) Loz |A|2 < &, then there exists a map ® of @ onto
2O such that

(1+Ce) ' x —y| <d(@(x), D)) < (1+ CeM)x -y ¥x,yeQ?,
and

I(d®)* o(dd) — o, < C&’,

l“ L*(Q
where d(-, ) denotes the intrinsic distance measured in =0,
Remark 2.3. Note that the additional hypothesis #(3%?) [, e 14 <

‘82 guarantees the part of the definition of e-quasirectangle which requires
0SCyy <e.

Proof. The main ideas of the proof are: give a procedure for subdivid-
ing Q( ) into six subrectangles Q(l) , Qél) and £© into six quasirect-
angles 2(11 RERRIN 22‘) which correspond to Qil), cen Qél) respectively as
in Definition 2.1; show that this construction can be iterated.

First we note that, by Remark 2.2, there is a smooth function w®: O

(L(O)) and a neighborhood w@ of A9 = ﬁ")(aQ(‘” ) so that
graph w[W(0 RO = 79 for some boundary nelghborhood O of E(O)

a3z = graph wl(;);2 , and

sup lDw( )| < osch( ) <4 0S¢ v <4e.
L(O BE

Let sl(Q(O)), s3(Q(0)) be the edges of Q(O) parallel to the x-axis, la-
belled so that the y-coordinate of sl(Q(O) ) is less than the y-coordinate
of s3(Q(0)) , and let sz(Q(O)) , s4(Q(0)) be the edges of Q(O) parallel to
the y-axis, labelled so that the x-coordinate of sz(Q(O)) is less than the
x-coordinate of s4(Q(0)) . Now we describe the subdivision of Q(O) . With-
out loss of generality we assume that |s2(Q<°))| < ]sl(Q(o))| where |sj(Q(°))|
means length of the edge sj(Q(O)) . Let x;, x, be the x-coordinates
of the points 1, % of the way along the edge sl(Q(o)) ,and y, the y-
coordinate of the midpoint of the edge sz(Q(O)). We slice Q(O) in lines
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{x =4}, {x =4}, and {y = 45}, where 4, is to be chosen in the
interval 1, = (x; — %ls, (@)1, x, - %ls;(@Q")]) for j=1,2,and 2, is

to be chosen in the interval I, = (y, — 5@, ¥, - %5 (@)).
We shall make the actual choices of 4, 4,, A; shortly, but for the

moment we observe that the subrectangies Qil) RN Qél) obtained by so
slicing Q(O) satisfy

0 1 0)
E1s, (@) < 1s,@01 < K, (@),

0) 1) (0)
Els, (@) < Is,( @) < s (@7,
for k=1,---,6. Hencefor k=1,---,6

diam(Q.") < &diam 07,

(1)

and
L@ _ 1@ _ 61s,@) _ 12
* 215,01 = i@ = Thsy @) = 7
It was precisely in order to arrange this property that we chose to subdivide
Q(o) into six pieces, rather than into four. -
Let A0 = fw))_1 © _, R? and note that by Remark 2.1 we have

/\

<2.

lh(o)(x) - h(o)(y)| <(l1+ 282)|x —y| forallx,ye RY ,

and A? is C* because d fw) is nonsingular at each point. Let p(o) be
the orthogonal projection onto Lo , and consider the slices

T ,={ex: e, %% =23y, aier,i=1,2,
— {C EE(O)Z (ez’ h(O)(p(O)C)) =/1}, 3.613,

where e, e, are the canonical basis for R?. Since K90 p © s smooth,
Sard’s theorem guarantees that I'; A is a finite union of smooth Jordan
arcs and closed Jordan curves for almost all A, with the Jordan arcs having
endpoints which project under p(o) to A9 = 9RO

We have established the notation needed in the proof, which at this
point can be divided in four distinct parts;

Part 1. We shall prove that it is possible to select 4, € I; for i=1, 2,3
such that each T" iA is a union of smooth Jordan curves and arcs, one of

which is a Jordan arc y; with endpoints in o3 and

1/2
oscugc(/ |A|> < Ce.
% (©
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Part 2. Assuming Part 1 we see that y,, y,, v, divide 2 into six
pieces 2(11) s, 2(61) each of them diffeomorphic to the unit square [0, 1]
x [0, 1] and where the labelling is such that Q,(cl) corresponds to Efcl) in
the natural way. We then choose & small enough so that if =@ is an
e-quasirectangle we can guarantee that each one of the resulting E}cl) is a
8,((1)—quasirectangle with 8,(c1) < % In particular, foreach k. =1, --- ,6
we need to exhibit a plane L,(cl) and construct a function f,ﬁl): R’ - L,((l)
satisfying conditions (ii) and (iii) from Definition 2.1.

Part 3. We shall prove that it is possible to choose &, as in Part 2, so
that the construction described in Parts 1 and 2 can be iterated arbitrarily
many times. This fact is a consequence of the properties required from
the curves y,, »,, v, described in Part 1.

Part 4. From Part 3 we conclude that =¥ can be partitioned into
arbitrarily small quasirectangles. The construction of the map ®: Q(O) —
2@ becomes then straightforward.

Partl. Let g, &,, &3: 2@ _ R be defined by g(0) = ey, AR opm)({))
for i =1,2 and g,({) = (e,, n© op(o)(C)). By the co-area formula we
have

(0)
/ Z(T, )di= v gl d#*
I ' {¢ez® ¢ g(Del}
< Liph® / 47"
{ces@ . gel}

< 3772 < C(diam @Y,

by virtue of Lemma 2.1. For each i = 1, 2, 3 there exists a set Ilf cr
so that |I]] > |1] and Vie I, #(T; ;) < CdiamQ"”. Let I be a

subinterval of I, of length |I| satisfying,

47 < 2iaf [ 4P
7 Jq

/{5ez‘°’ : g(DEl} tes® : g(0el}

over all subintervals 7, of I, with length %|I,|. By the co-area formula

2 5 2
/ / 4?47 di = v g 14|
rrJr, {tez? . g)er}

<C 4%,

{cex® : g(p)el’}
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hence there exists a set (I7) C I; so that |(I})'| > 3|I7| and VA € (I})

2

/ < —— | 14
dlamQ {0ez¥ : g(Der’}

< ——rinf / ~ .
diam Q%7 T J{¢ex® : g€}

|4]

Since (I}| > (1, and |(I])'| > L|I7] = &|I,{, we conclude that there exists
aset J, C I, sothat |J| > k|I,| and Vi€ J

0 [ 147 <cint [ 4
I, 1, J{gexV : g(er}

In particular for 4 € J,

%mﬂﬁ|w

iR
< Cmin{/ 141%, / |A|2} ;
{¢ez® : g(0)El, |} {ted : g(Vel ,}

where I, |, I, , are the subintervals of I of length 1|7 which lie at

(2)

opposite extremes of I;. Since g; and 3O are smooth, Sard’s theorem
ensures that we can select all of these 4 to be such that y, , isa finite union
of smooth closed Jordan curves and smooth Jordan arcs with endpoints
: (0) . P 0) .

in 8. Actually since for i =1,2 and A€ J,, f( g{(l,y). y € R})
are smooth curves, each of them passing through oR? in exactly two
points, and since p(o) projects ax® simply onto Lo , for each such A,
there is exactly one Jordan arc in the above union, which we call F;‘ 4 With
endpoints on X% . A similar result holds for A € Jss fw) {{x,A):x €

©

R}) and I3 ;. Notice that, since 4| = |VE v|, by integration along the
Jordan arc I"’;, , we have

172
oscv S/ 4] £ (i/(l“i /1)/ |A|2) :
r:,l ri-,.l ’ Lis
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hence by (2)

1

2
oscv < Cmin (/ |A|2 ,
Y {CEE(O) 1 g(DEL 1}

3) 3

5 2
ar) )
(/{ca“’) FIGIIAN:

For ¢ > 0 small F;" , Projects simply into RY . Furthermore since
SUP, . 5O ||(df0* odf)), -1l < & , the intersection with dRY at the end-
points is transversal and so are the intersections of F’;, , and F;, , with
I“;, , (in fact almost orthogonal for ¢ small enough). Therefore we can
select I"’i’, , tobe the required curves ;, i =1, 2, 3, so that in particular

< Ceg.

osc, v < Ceg, and the y,’s can be used to subdivide =9 into six pieces
E(ll) TN Zf,,l) diffeomorphic to the unit square [0, 1] x [0, 1], where the
labelling is so that Q,(cl) corresponds to Eg) in the natural way.

Part 2. In Part 1 we proved that 825{1) projects simply onto 1 , that
f (O)(Q,(cl)) is the compact region of L9 bounded by p“)’(az}c‘)) , that

1/2

(4) oscu_<_C(/ |A|2> + oscv < Ce,
ax{ @ 3z

and that

0
osc |v —11( )l <oscv+oscv £2Ce,
y axh )

( (0
9%, [2)>

for k=1,.--,6. By the same argument used in Remark 2.2, to prove
the existence of w: L — L* , we establish that for each k& there is a
smooth function w,(co): L9 (L(O))‘L such that

supr,(cO) <2supiv — n(o)l <2o0scv+2oscv < Ce,
1O s ozl ax®
920 +wQ (O e ozl forxeagl,
and
0 0), A0 1 0 1
2 + 0w () ez forxe U o,

where U,ﬁo) is a neighborhood of BQ,(:) .
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Recall that our goal is to prove that E(l) . E(l) are quasirectangles.
Choose 17,(c to be any value of v on 82(1) let L(l) be the plane through
the origin in R” which is normal to the 2-vector nk , pkl) the orthogonal
projection onto L,(cl) , and q,(cl) the orthogonal projection onto (Lk )
Define f,ﬁl): R’ & L,(cl) by

£ =p @) + 00 (O 00)).

Note that 62( ) projects simply onto L“) that fk(l) (OQ,(:) )= p,(c])(BE,(cl)) =
Akl) and that

(0)—11,({1)53 sup |n(0)—1/|+ sup |nk —v| < oscv + oscv.

n o i
ax{"nox® axVnaz® az oz

By direct computation we have

Y = p(df” +dw o 1),
namely for i, j=1,2

af _ofY Bf pw® asY
ox, _ ox, % ox, |-

] I

Since q“’)(a jw) /0x;) = 0 where g is the orthogonal projection onto
(LN*, and

(0) (0)

o (5)) o o (45)
then
(@) odfii™),; ~ (@™ o(df ),

5 0) 5 (0)

e i) ()
(0) (0)
ot o (45) - (85)

Hence
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0) 0
sup (/)" o(dfe)),; = (dF ) o(df ), |
R
1 0),2 0),2 Q 1 Q . 0)\2
< (11" = 191 + 4sup|Dw®* + 4sup|Dw |10y - 7)) (Lip )

and since Lip f © < —g (see Remark 2.1 following Definition 2.1), applying
Cauchy-Schwarz we have

sup!((df(l)) o(df));; — (@F ) o(df )1
<€, =" +suplDw,” ")
<C (;)):s(g v +;>)i%2u) ,
which implies

sup [[((@fi")" o (dfe”)) = 1]l < sup J(@F )" 0 df ), — 1,

x€ER? x€ER?
2 2
(5) +C|losc’v+ osc v
ax® ozl
2
<Gy,

Remark 2.1 allows us to conclude that f,fl) is a bilipschitz map from
R? onto L,(cl). This fact combined with the remark that j,fl)(aQ,(cl)) =

(1)(6):(1)) = Ag) guarantees that j,fl)(Q,(cl)) = R,(cl), where Rfcl) is the
compact region of Lfcl) bounded by A;cl) .

In view of (4) and (5) we have shown that for each k =1,--- , 6,
Z(l) is a quas1rectang1e (choosing ¢ small enough so that Ce < ) with
f“) g) R Q(l) R Q) R n(l) corresponding to f: | N Q.R, 7
in the deﬁnition of quasirectangle.

By Remark 2.2 we know that there exist a smooth function w,(c ). L(l)
(L,(cl)) and a neighborhood Wk(l) of 6R§cl) = A(l) f“) 6Q(1) such that
graph w,(cl)lwkmn R = Vk(l) for some boundary neighborhood I/}c(l) of ZS),

3
1

(1) and
IOR;"?

6):}(1) = graph w,((

sup|Dwk ) < osch ) <4oscv < Ce.
L oz
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The previous construction shows that for x € BQ(I)

D)+ w (FP00)) = o0 x) + wd (fOx))
+ wkl)( %) + w2 ()
=2 (SO0 +w ()
+ a0 + wP (O
= %) + w2 (% xy),

in particular, for x € BQ(I) N BQ((II)
(1 (1 1 1 1 1
(6) )+ wP (FO) = £06) +wP U ().
Part 3. We can repeat the slicing procedure, starting with D , @
/,il) , L,(cl) in place of =@ , Q(O) , f © , o respectively, to generate Ef‘) ,
@ /D 1?1 <k <6%. In fact we can repeat the slicing procedure j
k2 Jk k )
times, generating E}C[), Q,(C), j,'c(l), Lg) , 1<k< 61,foreach I=1,.---,7j,
provided
n Coe” < (1/8),

where C, is the constant appearing in the second inequality of (5). Indeed
(according to the definition of a-quasirectangle) we only need to stop when
" we get to the first integer j such that

(8) sup (/") o(df ) — 1)l 2 (1/8)" or oscv > 1/8
% x4

()

for some k€ {1,---, 6’} . There is a useful criterion, more precise that
(7) which guarantees that (8) cannot occur, provided that ¢ is chosen small
enough to begin with. Namely, suppose that we have successfully iterated
the slicing procedure j times, generating Eg) , Q,(CI) , kl) , Lfc[) , 1<k < 6 ,
foreach /=1, --., j. Then a simple induction based on the first inequal-
ity in (5) shows that if {Egl) {=0 with k, € {L,---, 61} is an arbitrary

nested sequence of the Eg) (i.e., Eg) C Eg;l) for 1 </<j), then

) Jj
9) supll@f,”)" o(dfy”) =1l < sup ()" ofdf®) — 1l + €, 3 ose”
LS 1=0 Y%,

for suitable C; (in fact twice the constant C which appears in the first

inequality of (5)). Thus we will be able to prove that (8) cannot occur if

we can show that the sum ), osc;za)z/ remains small (independent of
kg
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j) for any such sequence. It becomes clear now how crucial the choice of
Y15 ¥,» 7; made in Part 1 is.

Recall that we label the edges of Q(O) parallel to the x-axis sl(Q(O) ),
s3(Q(°)) and the edges parallel to the y-axis sz(Q(o)), s4(Q(°)) (with
sl(Q(o)),sz(Q(o)) having smaller y and x coordinates than s3(Q(°)),
s4(Q(°)) respectively). This labelling induces a corresponding labelling for
the edges of Q(l) , 6):(0) and 6221) ; in particular

‘ 0 ~1, /0 0 0
5% = ) (5,0 naz®,
1 0),—1, ~0 i 1
50 = ' Ve nazl
= o) AP s nezy,
where the last equality comes from the fact that for x € BQ,(CI)
1 1y, A1 0 0), A0
1000+ w (FP ) = 100 +w (O x))
Notice that (2) gives
1 2 . 2 2
(1) #eEy [ af<cmind [af, [Pt
si(Ei)) Sit Si2
provided that s,(X") is one of the new edges of X\", that is, 5,(Z") ¢
5 (Z ) ;s where S, | ={{ €T g() €1, |} and S, , = {¢ € 2V g(0)
€ 1; ,}. Note that by construction dist(/, 201 I, ,)= 30|si(Q(0))| and

. 8 1
dist(S; |, S; , )Z(Llph(o) dist(J; ;, 1, ;) > —9—-Elsi(Q(0))[
(11)
2 \/_ ©
Since for 1 < [ < j, k, € {1,---,6'}, kl_le{l,-~,6l'l},and

Q(l C Q(l 11) diam Q(l) < & diam Q(l D we have
-1

(12) diam 0\ < (8/15) diam Q'
Combining Lemma 2.1, (11) and (12) we have
diam =\ < 24 diam @V < 24(8/15)diam Q"

and

V5

diamx < 24( 8 ) diam 09 < 3 diam oY

< dist(S, ,,S,,) forj>11.
i1 i,2
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Thus for j > 11, no Z,(cj can intersect both §; 1 and §; 2 and hence
(10) implies

13 #2eE [ atsc [ Ak s ED) ¢ s,@)
s,z ZON\{Y

for each 1 < k& < 6. Now this can be applied with any of the iterates Zg)
in place of =@ , SO long as U s well defined; thus if j > 1 and ):,(c’)
are defined for k£ < 6 and each / <j+11, and if Z(l) Z(Z)
Z(l c 30 is any nested sequence, with 1 <k, < 6 for each !, then (13)
actually implies

(14) Z (S~(Z(1 ) |A|2 <C |A|2
Nk, / s-():(’))
Nk

. ) (-1
it g+ if si(Zkl )¢ sl.(Zkl_1 ).

L T

By the construction, for any nested sequence we have

L"l

2 (s, (z"))) < (1 + sup |Dw‘” ) Lip /U)Is (Q")

59 8 0!V 9\? 8 5 (-1)
SZ'§'T§| s kH)l_( ) 5 3PeEy

-1

< HX () < g7 G,

for [ < j+ 11, where w,(ci) satisfies the same conditions as the function

w constructed in Remark 2.2 did, but with respect to L,((ll) , Zgl) and Rg)

in place of L, X, and R, respectively. Therefore
(15)

#(5, =) [ < g7 6 [

(11

if si(zg)) c s V).
Now consider the alternatives
(D) si(zﬁé)) c--C s,.(zgj,’j”) ¢ s,.(z,(é;’)) for some 1 </ < j
or
(I1) s,.(zﬁjj'_)) c-.-cs,Z9).
In case alternative (I) holds for some /, from (14) and (15) it follows that

/
0 2. 0(7 f 2
%(si(zk; ))/s.(zﬁﬁ) 4 < C(S) z- A A 4T

1111
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while in the case where alternative (II) holds we deduce that

weEn [ L, ulsc(g ) 765, | o,

(0)

Since 82}3_) is connected, we have
}

4

2
oscv < osc v and osc’v <4 osc v.
azgj’ 1S (20) azU}) Py s,(Z(JJ))

Thus, regardless of which one of the alternatives (I), (II) holds, the follow-
ing is true:

7 1 J
7
osc <y (L / 4P+ ;?(az“”)/ |4]%.
) 8/ JgU-b\gU-i+1» 8 9x®
kj =0 kj-[ kj—l+ll

Since this is also valid for any ¢ < j in place of j, by summation we
obtain that

2 L&y 2
ZOSC VS ZZ(-S_) /q ]\E(" —1+11) lAI

(16) =095 g=0i1=0 -1 haten
Jj
7 ) / 2
+C§(8) #os% | 14
But
J g /
7 2
ZZ <§) /(a Dy yla—1+11) IAl
q=0 1=0 Eq 1\24; I+11
j q 1 ] ] 1
vy (Z)" [, _ ( ) Lo 4P
i \8 5 \z’*”’ 1=0 p=0 AN
J
SSZ/,) Z(lﬂl)l SXH)/
1=0 \ LAY

and hence (16) implies

j
(17) osc v < C (/ 14 +7/(az‘°))/ ]A|2) <cé,
E(D) 32(0)

q=09 Eg)
provided only that Zg“” is well defined by the iterative slicing proce-
dure described above. Note that we have used the additional hypothesis

;Z”(a):(o)) fa):(o) |A|2 < 82 .
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Let 8, € (0, %) be an arbitrary value to be specified later and 2 be

an g¢-quasirectangle with ¢ < g,. Suppose j > 1 is such that Zg) is well
defined and

for every nested sequence {Zg)}Lo with k, €{1,---, 61} . In particular
for g < j, by inequality (9), we have

* 2
sup [[(d”)" o(df”) - 1ll < 2C, B,
R

which implies that for any ¢ < j and any k, € {1,---, 6%}, chq) is a
q
C, By-quasirectangle, where C, = 1/2C, . We then choose g, so that

C, (C,8,)" < (1/8)%;

in particular g, is independent of 3O or j . This inequality asserts that
condition (7) is satisfied with C,f, in place ¢. Thus Eg) is well defined

forall /<j+11 and k, €{1, - ,61}. Hence by (17) we have

J
2 2
(18) 0s¢ v < C¢".
=0 azk,

Also using (4), for any Zg_tl) C Eg) with k].+1 e{l, -, 6j+l} we obtain
7+ 7

1/2
(19) osc ugc(f |A|2) +oscv < Ce.
az(f+1) $© ax¥)
K1 k)
Combining (18) and (19) we conclude that
& 2 2
Z 0S¢ v < C¢ < B,
1=0 9%
for & < ¢, where ¢, € (0, {) is a fixed constant not depending on O or
j and for every nested sequence {Zg)}{:é with k€ {1, -, 6'}.

We have proved that there exists a fixed constant ¢, € (0, é) such
that if ¢ € (0, ], if O satisfies the hypothesis of the main lemma
for ¢, and if the ch” are well defined by the above slicing procedure
with j >0 and Y, oscgzgl)u < ,Bg for every nested sequence {Eg)}Lo ,
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then the Zg) are well defined for / < j+11, ¥/, osc?,zu) < Ce* and
i+1 2 2 ! “
{:0 oscyzmv < B for every nested sequence ):5(1) , =0, j,j+1.
& .

Thus by mathematical induction we can show that )Zg) is well defined for
any j>0 and k€ {l,---, 6’} ; moreover forall j >0, ELooscézmu <
&

Ce? for every nested sequence ZS(II) .
Part 4. Another way of phrasing the above conclusions is as follows:
there exists a fixed constant ¢, € (0, }) such that if ¢ € (0, ¢], and

z© satisfies the hypothesis of the Main Lemma for such &, then for
every j >0, @ canbe partitioned into 6’ €;-quasirectangles {Eg) },6(;1 ,
with ¢ ;< Ce. In particular for every j > 0 and every k=1, 6j
there is a plane LU) orthogonal to the 2-vector 17 , a rectangle Qk ,a

compact region R(J L(’ and a smooth map f(” R’ - L(’) satisfying
conditions (i), (11) and (111) of Definition 2.1. By Remark 2 2, we know
that there is a smooth function w(J ) L(’ (L(’ )" and a neighborhood

Wk(j) of 8R§CJ) A(” jm 8Q(J)) such that graphwk WORD = V;((J)

for some boundary neighborhood Vk(J of ):g , 82(” = graph wk R

and
)

sup [Dw,;”’| < osch(J) <4oscv < Ce.
L](ci) 62’
In view of (6), for xeaQ ﬂaQ(’) k,ge{l,---,6} wehave

K@+ wd () = £ + w7 (x).
Note that since % is €™ and diam={ < 24(&) dlamQ(o), for
large enough j, we can select the w(’ ) to be so that graph w! k | RU) ):i’) .

From now on we fix one such j. We define maps q)(’ ). Q Zgj) by

o0 (x) = () + wl ().
One can easily check that forall k=1, , 6,
o . )
sup [[(doy)" o(dg) - 1l < €&,
Q](‘J)
which by Remark 2.1 implies that the Jacobians of ¢(’ ) and (¢(J ))
bounded by 1 + Cée*. The map P: Q(0 3@ defined by

o= ¢,(cj) on ,(cj)

are
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is a well-defined homeomorphism. Moreover, it is clear that

I(d®)" o(d®) — 1] yoo g, < ce’.

In order to obtain the appropriate Lipschitz bounds for ¢ and @ ! et
X,y € Q(o) and let ¢ denote the segment joining them, then

|®(x) ~ P(y)] < d(P ( (x), ©(y)) < Z(P(0))
61
<Z% Dy <+ce)d lengd),

k=1

and
|®(x) — ®(y)] < d(@(x), D)) < (1+ CeD)jx —y].

This inequality shows that ® is LlpSChltZ with respect to both the intrinsic
and the Euclidean metrics. Let y C 3@ be a smooth curve joining ®(x)
and ®(y) and such that

lengthy = #(y) < (1 + Ce)d(®@(x), (),

then
X -yl <@ <Z% noY)
6}
<E;7 M <+ce)Y #Zynzd)
k=1

< (1+CHZ(y) < (1+ Ce)d(D(x), D).

This establishes that @ is a bilipschitz map with respect to the intrinsic
distance on =¥

3. Bilipschitz parameterization in the smooth case

Simon proved (see [11], [12]) that for % an arbitrary smooth surface
in R"” if f.?ﬂBp(O) |A* d#° is small enough, then % N B,,(0) is well
approximated by graphs of functions with small Lipschitz constant. The
existence of this special type of decomposition allows us to conclude that
for [o.p ) |A|2 d#? small enough there exists a quasirectangle 9 con-

[4

taining a neighborhood of the origin, and satisfying the hypothesis of the
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Main Lemma from the previous section. Moreover we deduce that the
Euclidean distance and the intrinsic distance are equivalent on © ; this
allows us to conclude, thanks to the Main Lemma, that 7O admits a
bilipschitz parameterization.

Lemma (Approximate Graphical Decomposition [12]). For any f >
0, there exists e, = ey(f,n) > 0 (independent of ¥, p) such that if
e € (0,8] if 07 NB,0) =3, if Z(F NB,0) < Bp’, and if
fonp © |A|2d}‘? 2 < &%, then the following holds: There are pairwise dis-

P
Joint sets P,,--- , P, C.7 with

N

Y diam P, < Ce'p

j=1
and a set S C (3p/4, p) with L(S) > p/16 such that if ¢ € S then
9B _(0) intersects ¥ transversely, dB_(0) N (|J P)=0 and

M
ZnB,(0)=JD,
i=1

where each D, ; is topologically a disc so that diam D, ;> C'e. More-
over there exist functions u; € C*(Q,;, L,.L) with L; a planein R", Q, a
smooth bounded domain in L, of the form Q, = Q?\(U‘,c d; ), where Q?‘
is simply connected and d, x are pairwise disjoint closed discs in L; which

do not intersect BQ?, with graphu, connected, and

sup p_lluil‘ +sup |Dy,| < Cce'Hn=3
Q, Q

graphu, N B (0)C D, ,,

and D, \graphu; is a union of a subcollection of the P, and each P, is
topologically a disc.

We claim that there exists ¢, > 0 so thatif % satisfies the hypothesis of
the lemma above for ¢ <&, <¢,, and if Z_ is the connected component
of % n B_(0) containing the origin, then there exists a function u €
C®(@Q, (L'y") with L' aplanein R" containing the origin, Q a smooth
bounded domain in L’ of the form Q = QO\(Uk d,) , where Q° is simply
connected and d, are pairwise disjoint closed discs in L', with graph
u connected, and supg |Du| < Ce, graphun BU/Z(O) co.n BG/Z(O),

and Z_NB, /2(0)\graphu = U;V;'I P;, where the P, are pairwise disjoint
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topological discs and E dlamP < 1 330 - Note that since 0 € &, nBa /2(0),

supg [Du| < Ce and -, dlamP < 4o imply o~ supQ lu| < & for g
small enough.

Using the notation from the Approximate Graphical Decomposition
Lemma and assuming D, = 9, it is easy to prove, using basic calculus,

that there exist a point X, € Q, and a set Q¥ c Q, with |Q"| > 1|Q|
such that for all X € Q

\Du,(X) — |<_/ |Du|<C(/ |Du|)

Since |Du| < %, we have

/ |D?u)? < c/ |4
Q 2,

which implies that for all X € QY
1/2
|Du,(X) — Du,(X,)| < C (/ |A]2) < Ce.
96

Therefore for X € QY
V(X + u, (X)) — v(X, + u,(X,))| < 2|Du,(X) — Du,(X,)| < Ce,

where »({) denotes the 2-vector orthogonal to 7, . Let K > 0 be an
arbitrary constant to be specified later and let {; = X, + u;(X,). Sard’s
theorem and the co-area formula [1, 3.2.22] guarantee that there exists
t € (Ke/2, Ke) such that the set I' = {{ € Z_: |v({,) —v({)| =t} is
contained in the union of finitely many pairwise disjoint Jordan curves
and Jordan arcs with endpoints in 4%, and

#Tnz)<< / 4] < —a
Let |

B ={LeD () -v()| =1},

T={{ecz,:v()-v)l<t}.

Let L" be the plane through the point X, with unit normal »({;), and
let p” denote the orthogonal projection onto L”. Let D= B 5/2(0) nL”.
Then the Poincaré inequality implies that

min{|%]|, %} < Co.#(p" () < Ca’/K
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for any disjoint open subsets 2, , %, C D\p" (') such that 8&,nD c p" ()
(see [6]). Hence by choosing K large enough, independent of £ and p,
we can guarantee that there is a unique component € c D\p”(I") such
that

ID\Z| < Co’/K and p"(&)C¥.

If & =, %, where the &, are the connected components of %, then
{see Lemma 2 from [11]),

diam B, < C (/ |4 d7 +%(a%)>
.%

and

Zdiamgﬁ’isC(%+£)a§£a< la,
i

K~ = 64
for K large enough. The rest of the proof is now straightforward.
Without loss of generality we may assume that L' is the Xy,
x,-plane. In order to prove that if | #nB () |A|2 az? is small, then there
' 14

exists a quasirectangle containing a neighborhood of the origin, we let
9, NnB, /2(0) = & and consider the function s: & — R defined by

S(Xy5 Xy, o0 5 X,) = 3(|x; —x,|+|x, +x,]) . In particular, s is a Lipschitz
function whose Jacobian is bounded above by 2. The co-area formula
implies that there exists g, € (¢/4, ¢/2) so that s—l(ao) NZ does not
intersect {J; P;, :

2) # (s a) N D) < (Clo)# (@) < Cho,

and

(3) / 4R 47 < -C-/ J'sld? < 9/
s~ a N2 g Ja G JonB

Let Q(O) = [-0,, 0,] x [-0,, 6,] and 50 - 9n (09 x R"”z) . From the
Approximate Graphical Decomposition Lemma and the fact that 57! (gy)N
U ; Pj = @&, we conclude that 5@ s diffeomorphic to the unit square and

|4 d7
0)

P

that 9= projects simply onto L'. Moreover putting (2) and (3) together
we have

) oscv < #(0x®) / 4f < C / A7 < Ce*.
az® ax'® SNB,(0)

We conclude that condition (ii) from Definition 2.1 is satisfied for 5 =
u(C<0)) for some (@ ¢ 939 and L orthogonal to 7. Let p be the
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orthogonal projection onto L. For x € L' we define f(x) = p(x +v(x)),
where ve C®(L', (L')h), Uig0ng = U gong > and sup;: |Dv|<2supg, | Dyl
< Ce. Note that f is smooth and that f (Q(O)) = RY where R is
the compact region bounded by p(az“”) . By direct computation we show
that

sup I(df)" o(df) — 1) < C&’.

Thus we have

Lemma 3.1. For any B > 0, there exists ¢, = ¢,(f, n) > 0 so that
if & satisfies the hypothesis of the Approximate Graphical Decomposition
Lemma for ¢ < &, < g, then there exists a quasirectangle 5@ containing
a neighborhood of the origin and satisfying 7 (32(0)) /. 550 IAI2 <é.

In order to prove that 5O admits a bilipschitz parameterization, the
only thing left to do is to check that the Euclidean metric and the intrinsic
metric are equivalent in 5@

Lemma 3.2. For any B > 0, there exists ¢, = &(f, n) > 0 so that
if &7 satisfies the hypothesis of the Approximate Graphical Decomposition
Lemma for e < &,< ¢ ,and & isthe connected component of ZNB, /2(0)
containing the origin, then forany { € &

¢ < d(0, §) < (1 +Ce)Ll.
Remark. From the previous lemma we deduce that for any given (,, ¢,
€ % if either

|A|2d%2582 or / |A|2d/72582,

/ynBilll—tzl(Cl) F0Byyy ¢y 52)

and if in either case {, and {, are in the same connected component,
then \
ICI - Cz, < d({l » 52) _<_ (1 + Ce )lcl - gzl

Proof of Lemma 3.2. Let {' € @ with |{'| = p'. Then there exists
o' €(3p',2p") sothat

. . |
ZNB,(0)=FU (LiJPi) with & c graphu and ;dlaml’i < 7l

with # € C*(Q, L"), © c L, and L a plane containing the origin,
and supg |[Du| < Ce, and (6") 'suplu| < 3 - Let F(x) = x + u(x) for

x € Q and let = denote the orthogonal projection onto L. The segment
joining the origin to z(¢’) is the union of segments l4;, p;,;] which are
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completely contained in Q and segments [p;, ¢;] which do not intersect
Q. We denote by x|n(C')| the total length of the segments [p;, ¢,], i.e.,
2P —al = kin({)] < x|{'|. Note that x < i - Using this notation we
have

d0,Y<s > dF W), F@)+ >, dF(),F )

[7;,¢INQ=0 [4;,p;,,1C02
2
SA+Ce) D g=pal+ Y. AT W), F ()
lg;,p;,,]1CQ [p;,q,JnQ=0

<L+ CN1 -1+ 1 dF 1), F ()

Let Ci=,7(p.) and 5, = % (g;); then

D20 =l =3 py = 4l + ) —ula)1)' P < (14 €)Y~ g
116<1+Cs e

In order to evaluate d({;, ;) we repeat the previous process replacing
0,{,%,n,p;,4;,and x by {,n,, F, %, p, ;,4; ;>and k,, respec-
tively. Then

(G, ) < (1+ CA(1 = K)IC -l + 3 d(Fw, ), Fa, )
J

and

d0, ) < (1+CeH(1 -+ (1+CeH) 3 (1 =)L, —
+3°d(Fw; ), %4, )
ij

Iterating the process k times and using the notation Cil T
» stp 1> >
Py Wiy Piy i 0 B, o80d K inplaceof £,

&, P s and k,, respectively, for n < k, we obtain

d0,¢)<(1+Ce)(1 - x)lc’l
1+C8)Z Z l—K “';in)lci]""’in_”il"”’i!

n=1i,"

+ Y A, p,_...,,.W),%,...,igq,-l,...,,-hl),

sy
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where
Z. ’Cll PR ’ik+l - ni] > ’ik+1
Boom o by
= . Z | i (p’1>" ’ik+l) T, ’ik(qil"“ Vi
by
2 : 1
S(1+C8) Z Ipil""’lk.;-l-qil"”’lk+1|
i, ik+1
1+C8 K . ik il""'ik—nil’ ’ikl
By oy
<l (1+ce’) Y K |
— 16 + € ) ) il""’ik nil, 1ik
A

(%(1 + Cez))k+l I}

IA

We choose ¢ > 0 so that A

= L1+ Ce) <

1

s s s gy
(& .. FACa ’ik+l) » T i )
<+, ., —4 . ]
SA+N Ly 0 -
Under this assumption we have
d(0,¢)< (1 +Ce) (1 - x’)|«:’|
S CAY Y ok M e

n=1i i,

+(1 +C8 ) Z lcil,“"iku h

Bser slpy

d0, )< (1+Ceh)(1- x>|<:’|

+(1+C8)Z Z I—K _,,,in)ICil,...,,-n—’71'1,---

n=11i,-

Z Kiyyoe il

1+C8)

y e

T »
n‘l’ )

R

’lk

- 77,'1’...

>k

7+ Since & is a com-
pact smooth surface, we conclude that there exists k£ > 0 so that for all
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d0, )< (1+Ce)(1 - x)|c’|

1+C8 )Z Z (l—K '"’in)l i, ...,,-n—'l,-l,...,,-n

nltl ,n

1+C8) Z M- Jkl

+ Cé? (1+Ca Z K, v, T M i,

d0, ) < (1+Ce?)(1 - x>|c |

+(1+Ce )'Z Z I_K ...,i")lci]’...,,‘n_”11,...’,'"
n=li,,i
+(1+C8) Z ,-l,...,ik-"'l,-],...,,-k|

TR
2.k+1 41
+Cex L.
Therefore we conclude
k+1

d©, )< (1 +CeH |+ Cé’ (ZA ) Il < 1+ ML

Since the inequality |¢'| < d(0, {') holds for any (' € ., the proof of
Lemma 3.2 is complete.

Hence combining the results from the Main Lemma and Lemmas 3.1
and 3.2 we deduce '

Theorem 3.1. For any B > 0, there exists &, = &y(f, n) > 0 so that
if & is a smooth surface in R", if € € (0, g)], if 0 N B, (0) =2, if

%Z(YOBP(O)) < Bp*, and if Jsnm ) |A*d#* < &%, then
I

s(0) and azlﬂBp/m(O):@

N
FNB,,0) = ng NB,,
!

where each &, is the image of a disc in R’ by a bilipschitz map ®,.
Moreover for i=1,.-- , N,

1(dD,)" o(d®,) —1l| = < Ce* and Lip®,, Lip®; ' < 1+ Ce’.

4. Bilipschitz parameterization in the varifold case
Recall that given g, &, p > 0, we denote by 7/] (B ) (0)) the set of C*™

“embedded connected surfaces .% in R", containing 0 with 8.5 ﬂBp(O) =
&, and satisfying
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2 2 2 2 2
#XFNB,(0) < fp* and / 42 d 7 < &,
SNB,(0)

where A denotes the second fundamental form of .. We denote by
Ty (B,(0)) the set of integer multiplicity varifolds v(*, 6) which in
B p(O) can be expressed as a measure theoretic limit of sequences {7},

where &, € 7, ,(B,(0), ie., fy; fd#?* - [ fdu for each continuous
function f: B p(O) - R with compact support in B p(O) . In particular u =
#°.0. In order to prove the local result we study the class '7;;,8(3,,(0)) ,
but other than simplifying the notation there is nothing special about the
choice of B,(0) over B,({).

Lemma 4.1. Let {#} c F; (B,(0)) converge to v(&,0) €
‘7&8(3 p(O)) in the above measure theoretic sense. Then {} converges
to .7 in the Hausdorff distance sense.

Remark. It follows from the proof to be given below, that . has
generahzed second fundamental form 4 in the sense of [3] and that A is
in L?.

Proof. Let {#}C J, (B,(0)) be so that [, fd#* - [, fdu for
any continuous function f with compact support in B p(O) . By the mono-
tonicity formula, for all { € Bp ,2(0) and for almost all 7 € (0, p/4),

d ID*r)?

= (27’ F NB =~
77T (A NBD) om0 72

-3 2
+ mem—mﬂwx,

dxz?

in the distribution sense, where r = |x — {|. Integrating between ¢ and
7 with o < 7, we have.

PH NS, NB) - 0T (H N B, (L)

-2 ——2
-7

- H)\d7? -y, H)d7??
a mem 0, Hy) +2t%mﬂxc>l>

N .
+ / <1Hk+ E) 47>
(B,(O\B, (DN r

D 2
— ) dZ
16/ O\B, ()N, ( )
LAl

dz’.

16 Ji8 o0\8,(0)n%,
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Applying Cauchy’s inequality (ab < aaz/ 2487 /2¢), and letting o | O for
{ € &, we deduce

(1) 20727 N B0) + l/ ALY
8 Jsnm ) — 2

If &, did not converge to % in the Hausdorff distance sense, then there
would be a sequence {n,} with n, € &, n, = n,and n ¢ . Let
7 > 0 satisfy S“NB, (1) =D, and let k be large enough so that |, —n| <
7. Fix N > 0 and let Nr = 7. Since %, is connected and the %
converge to ¥, there exist points p,, --- , p, € % such that B, 4(P;) C
Bir(nk)\B(i_l)r(nk) . Applying (1) with p, in place of {, r/4 inplaceof 7,
summing over 7, and using the fact that Uﬁv Br/4(pi) C B,(m) C B, (n),
we obtain
-2
16 (1) ZF, B, (1) +/ \H,|"d#* > 4N=.
4 FinBy () —
Hence forall N >0,
lim inf |4, 1> d#” > lim inf |4,1°d#* > 2N =,
k—oo J5nB,(0) k—oo J 2B, (1)

where A4, denotes the second fundamental form of .~ . This last in-
equality contradicts the fact that the L? norms of the 4, are uniformly
bounded on B,(0).

Theorem. Forany B > 0, there exists ¢, = ¢,(B , n) sothatif v(%*, 6)
€ %,EO(BP(O)) and 0 € &, then

N,

Q(y'-Bp/M(O)) = ZQ(Q}L p/64(0))’
i=1

where each Z, is the image of a disc in R® via a bilipschitz map ®,, and
where the decomposition is compatible with the multiplicity. Moreover for
i=1,---, N,
I(d®,)* o(d®,) —1|| .~ < Cey and Lip®,, Lip®;' < 1+Cé.

Proof. For B > 0, let ¢, be as in Theorem 3.1. Since v(, 0) €
7 80(BP(O)) , there exists a sequence {S} C Fp 5,(B,(0)) which con-
verges to v(<¥, 8) in the measure theoretic sense on B p(O) . In particular
liminf, | fyk nB,(0) |Ak|2 dx* < 8(2) ,and {} converges to ¥ in the
Hausdorff distance sense. Thus there exists a sequence {{,} with {, € &
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such that {, — 0. Forall k large enough, B ) /Z(Ck) CB p(O) and Theorem
3.1 guarantees

SN B, = Uq> )N B,5(L,) and a®}(D)N B, 1,(L,) =D

where @ $ is a bilipschitz map from a disc D C R? centered at the origin,
onto one of the connected components of ., N B ) /32(C ) - Since the areas
of the 7 are locally uniformly bounded, the M, ’s are uniformly bounded
independently of k (i.e., sup, M, < M). By passing to a subsequence we
may assume that M, = N > 1 forall k, and that

lim inf |4,/ d#* = lim 14,1 d7”.
k—oo J5 B (0) k—oo J 5B, (0)

Furthermore foreach j=1,-.- , N,

Lip®, Lip@) ™' <1+ C |4,"d7’
AT )

<1+C |4, 1> a7,
F4NB,(0)
by Theorem 3.1. For fixed j=1,---, N, and o are equicontinuous
and uniformly bounded. Thus by Arzela-Ascoli we conclude that there
is a subsequence {d>fl} which converges uhiformly to a bilipschitz map
;. Without loss of generality we can choose a subsequence of (k'} that

works for all j. Since the %, converge to & in the Hausdorff distance
sense,

2

u(F B, /64(0)) Z @, (D).B,64(0)), With 3@ (D)N B, ;,(0) =D

and

Lip®,, Lip(®,) ™ <1+ Climinf 4,17 d7* < 1+ Cel.
/ / koo J.5nB ()

Furthermore since foreach j=1,.-- , N,
k. * k 2
||(a’¢)j) o(dCDj) - tHLw(D) < Cg,
letting k — oo we obtain

1(d®))" o(d®;) — 1]l ) < Cey -
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Notice also that if CGYOBG/M(O), then 8({)=|{je{l,--- ,N}: €
®,(D)N B,,6,(0)}].

Recall that for an open domain U ¢ R" with 0 € U, J(U) de-
notes the set of multiplicity one 2-dimensional varifolds without bound-
ary, v(*), with C* connected support in U, containing 0 and which are
have uniform local bounds in U on their areas and on the L® norms of
their second fundamental form. We denote by 7 (U) the set of v(~, )
which in U, can be expressed as the measure theoretic limit of sequences
{v(#)}, where v(#,) € T (U). That is, we assume that for each com-
pact K C U there is a constant C, such that # 2 (% nkK) < C.,
fyan ]AklszZ < Cx and fykfa'/‘?2 — [o fdu for each fixed con-
tinuous f: U — R with compact support in U . Under these conditions
w==x% 2.0, where 0 is a positive integer valued function, and {&} con-
verges to ¥ in the Hausdorff distance sense. .

Definition. Let v(%, 0) € S (U), let ¢ > 0 we say that { € & is
a bad point for ¢ if for every sequence {v(5)} € 7 (U) converging to
v(¥, ) in the measure theoretic sense,

im [ lim inf (4,12d 7% ) > &

a0 k—o00 51030(0
Note that for a given ¢ > 0 there are finitely many bad points S
with p = p(e). If L € A\{;, -, {,}, then we say that { is a good

point for &.

Corollary 4.1.  There exists &, > 0 so that if € € (0, g,], if v(&, 0) €
T(U), and if { € & is a good point for ¢, then there exists r({) > 0
such that for all 0 <r <r({)

N
(& B, (0) = Zﬂ(g,-lBr(C)) ,

where each 2, is a bilipschitz image of a disc in R, and the decomposition
is compatible with the multiplicity. Thus if {' € N B () has multiplicity
!, then precisely | of these discs Z; contain ¢ A

Corollary 4.2. If {v(F)} C T (R®) converges to v(.5, 6) € T (R)
in the measure theoretic sense, and &% is C° embedded, then & is a
Lipschitz surface.

Proof. Assume initially that { € & is a good point for & < ¢;, where
the notation is the same as above. In order to prove that .5 has a bilip-
schitz parameterization in a neighborhood of { it is enough to show that
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there exists r € (0, 0/64) so that for i, j€ {1, .-, N} either
(0 Y (D)NP(D)NB,(L)=2 or @(D)nB,(¢) = (D)NB,(L).

Assume this is not the case. Using the hypothesis that . is C° embedded
in U, we can choose r € (0, g/64) so that ¥ N B ({) is homeomorphic
to a flat domain R C R? via a map f, and f({) € intR. We may also
assume that ~ is small enough so that

FaB )= |J oDnBQ),
{e®' (D)

and each one of the @’(D) NB,({) is connected. Since f is a homeomor-
phism and @&’ is a bilipschitz map, f(®’(D) NB({)) is an open setin R
for each j. Furthermore, f({) € int R implies that there exists o > 0 so
that

B,(f({)NR* ¢ ﬂf (D) N B,(0)).
j=1
The fact that (%) does not hold for any r > 0 means that, for example,
<I>1(D JOB (§) # @’ (D )NB . ({), vr > 0. Since B(I)’(D)OB (§) = &, there
exists a sequence {Cn }, C (<I>1 (D)n Br(C))\(CDZ(D) N B ({)) or a sequence
{3}, € (@*(D) A BN\ (@' (D) N B,({)) converging to {. Thus for n
large enough f(Cf;) € B_(f(£)) AR’ for j=1 or j=2,suppose j=1;
the f({)) € f(®*(D)N B,(¢)) and hence ¢, € ®*(D) N B.({) because f
is a homeomorphism. This contradicts the choice of the {C,l,},, . Hence,
locaily, . admits bilipschitz parameterizations away from finitely many
bad points {;, -+, .
Assume now that for some 0 < J =d(g;) < ¢,
lim lim inf |4, P d#? > 8.
720 koo J7ns,0)
Nevertheless we claim that there exists a subsequence %, (denoted sub-
sequently by ;) so that
lim lim lim inf 14,) d7’ < e .
0200-0 koo J%n(B,(0)\B,, (0)
Otherwise we could find a decreasing sequence {g,},., converging to 0
and so that for each k > 0 there exists n, such that Vn > n,,
52

(A(dff > —.

/xnw,k O\B,,, (0) 2

Okt
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Since {#} c F(U), there exists C > 0 such that

sup/ IAkI2 az’ <C.
k>0J.%nB, (0)

Let k, > O be large enough so that %koﬁz > C,andlet N, = max_; <k M-
Then T

&
2 2 2 2
14, Pd#’ > / 14, | d#
-[?NonBﬂo(O) N ;0 B (B (ONB,, (O) 0
> (ky+ 1)8° > C,

which contradicts the assumption that sup [ %08, (0) |Ak|2 < C. Therefore
%

we can find a subsequence, denoted subsequently simply by {<*,} such
that for fixed ¢ > 0 we have

/ 4 Pd? <8 <.
FN(B,(0\B, 1 (0)

Let n > 3 and let .%’ denote any of the &, . Then the argument used
in [12] to prove the Approximate Graphical Decomposition Lemma goes
through, in the codimension-one case, if we replace %’ N B ,(0) by F'n
(BD_(O)\BO_/S(O)) as long as

/ P d#? < 6% <é.
S (B, (O\B, 4(0)

Namely there are pairwise disjoint sets P,, --- , P, C% with

N
}:diaij < Cal/za,
=1
o, € ({0, o) and o, € (30, 0) such that for i = 1,2, 8B, (0) inter-
sects 7 transversely, 8B, (0)n (U; P;) = @, and

M
&' (B, (0\B, (0) = | 4,(0,, 3,),
J=1

where each A4,(0, , g,) is topologically an annulus so that diam 4,(a, , 6,)
> C —lal . Moreover there exist functions u; € Cw(ﬁi, Lf‘)\with L,
a plane in R , and Q; a smooth bounded domain in L; of the form
Q, = Q?\(Uk d; ), where Q? is connected, and d; , are pairwise disjoint
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closed discs in L, which do not intersect BQ? , with graph u; connected,

and with
sup a_llui| + sup |Du;| < ce'’,
Ql

graphu ﬂ( ( )\B ( ) C Ai(dl > 0'2) >

where 4,(o;, 6,)\ graphu, is a union of a subcollection of the P;, and
each P, is topologically a disc. .
Now choose p € (0, 30) so that 8B, (0)N (U, ,d; ,) =9, and

c c
/ D’u) < & Druf < < |42 dz?,
8B, (O)NL O JQN(B, ,(O\B, 4(0) G Jao,, )

where the second inequality comes from the fact that [Du,| < §.
Let w, € C*(L,NB ,(0)) satisfy

A'wl.=0 on L;NB,(0),
w;=u;, Dw,=Du, onL;N BBP(O) .
Then (see [11])

/ Dw < Cp / Dul<C 412 d 72
L.NB,(0) B,(ONL, Ao, ,0)

In particular

/ Ar<c / \Du < C D*u?,
graphw; L;NB,(0) Q,N(B,;,(0\B,4(0))

where ANI is the second fundamental form of graph w;. Let
, M : ] M
= (Z\B, (0))U (U(A,-(al ; 62)\6',,)) U (Ugraphw,.) ,
i ) i

where C/'; is the cylinder (LiﬂBp(O)) X (Li)J‘. Then .& isa C"' com-
posite surface, satisfying

-2 2 52
[ at< | S I
£nB,(0) S'N(B,(0\B, 5)(0) ~ Jgraphw,

/N A< co?< 2,
nB,(0) 2°

and

p—k

for J small enough.
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We have constructed a new sequence {5’2 }of C b1 composite surfaces
that converges to . in the measure theoretic sense and so that
. . ~ 1
tim [liminf [ _ |47 d#?) < =&l
r—0 k—co F.NB,(0)

b

Therefore we can find a sequence {5/’;} C J(U) converging to . in the
measure theoretic sense and so that for all &

/A |4, I” < 2/~ 4 <cs <e.
ZNB,(0) F08,(0)

Thus the origin is not a bad point for ¢, with respect to this new sequence,
and . admits a bilipschitz parameterization in a neighborhood of 0.

Remark. If { € % and ®: D c R® - .# N B,({) is the bilipschitz
parameterization constructed above, then from Theorem 3.1 it follows that
® is a quasi-isometry in the sense that

1(d®)" o(dD) = il 1y < Cy-
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